From 1 - 10 / 28
  • In conjunction with an engineer of the Works and Housing Branch, a brief examination of the limestone deposits at White Rocks was made on 2/11/50 to determine their suitability as a source of road-metal and aggregate. The location and characteristics of the limestone deposits are described in this report. The northern and southern outcrops are described in some detail, and recommendations are made for further investigation.

  • In January, 1951, samples of radioactive minerals stated to have been collected in the Mt. Kavanagh (Cavenagh) area, Central Australia, were submitted to the Bureau by Mr. Norman Ashmore. Two radioactive minerals were present, one apparently allanite, and the other a strongly radioactive mineral of composition similar to betafite. The opportunity was taken of the presence in Alice Springs of the geophysical party destined for Rum Jungle and the geological party destined for Maranboy to make a brief inspection of the area. Two days were spent in the area. This report gives an account of the investigations and their results.

  • Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of a basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. This process has been validated for one-dimensional models such as a drill hole, where extensive information can be provided for a specific location. The process has also seen increasing use in more complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. These geological formations will typically consist of a range of lithological compositions, resulting in a range of spatially variable thermal conductivity values. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The structure of the basin has been built using Intrepid Geophysics' 3D GeoModeller software package using data from existing petroleum drill holes, surface mapping and information derived from the FrOGTech SEEBASE study. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis, using data from deep wells only (>2000 m). In turn, a range of possible thermal properties was determined from rock samples held by the New South Wales Department of Primary Industries and analysed at the Geoscience Australia laboratories. These populations of values were then randomly sampled to create 120 different forward models which were computed using SHEMAT. The results of these have been interpreted to present the best estimate of the expected subsurface temperatures of the basin, and their uncertainties, given the current state of knowledge. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. The results also show a significant degree of variability between the different thermal modelling runs, which is likely due to the limited data available for the region.

  • The Officer Basin spanning South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. Despite numerous demonstrated oil and gas shows, the Officer Basin remains a frontier basin for energy exploration with significant uncertainties due to data availability. Under the EFTF Officer-Musgrave Project, Geoscience Australia acquired new geomechanical rock property data from forty core samples in five legacy stratigraphic and petroleum exploration wells that intersected Paleozoic and Neoproterozoic aged intervals. These samples were subjected to unconfined compressive rock strength tests, Brazilian tensile strength tests and laboratory ultrasonic measurements. Petrophysical properties were also characterised via X-ray computerised tomography scanning, grain density and porosity-permeability analysis. Accurate characterisation of static geomechanical rock properties through laboratory testing is essential. In the modern exploration environment, these datasets are a precompetitive resource that can simplify investment decisions in prospective frontier regions such as the Officer Basin. Appeared in The APPEA Journal 62 S385-S391, 13 May 2022

  • Rock properties provide the vital link between observed geophysical data and interpreted geology. Geoscience Australia has periodically made measurements of rock properties to support various investigations into the composition and structure of the subsurface. The Rock Properties Project consolidates this information into a single database structure and makes it accessible to external clients via a web delivery application. We have chosen to initially concentrate on mass density and magnetic properties, as these are of prime importance to the important gravity and magnetic datasets maintained for the Australian region by Geoscience Australia. Additional property types and more extensive datasets will be added over time.

  • NDI Carrara 1 is a deep stratigraphic well completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI), in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-Basin, a newly discovered depocentre in the South Nicholson region. The well intersected Proterozoic sediments with numerous hydrocarbon shows, likely to be of particular interest due to affinities with the known Proterozoic plays of the Beetaloo Sub-basin and the Lawn Hill Platform, including two organic-rich black shales and a thick sequence of interbedded black shales and silty-sandstones. Alongside an extensive suite of wireline logs, continuous core was recovered from 283.9 m to total depth at 1750.8 m, providing high-quality data to support comprehensive analysis. Presently, this includes geochronology, geochemistry, geomechanics, and petrophysics. Rock Eval pyrolysis data demonstrates the potential for several thick black shales to be a source of hydrocarbons for conventional and unconventional plays. Integration of these data with geomechanical properties highlights potential brittle zones within the fine-grained intervals where hydraulic stimulation is likely to enhance permeability, identifying prospective Carrara Sub-basin shale gas intervals. Detailed wireline log analysis further supports a high potential for unconventional shale resources. Interpretation of the L210 and L212 seismic surveys suggests that the intersected sequences are laterally extensive and continuous throughout the Carrara Sub-basin, potentially forming a significant new hydrocarbon province and continuing the Proterozoic shale play fairway across the Northern Territory and northwest Queensland. This abstract was submitted and presented at the 2022 Australian Petroleum Production and Exploration Association (APPEA), Brisbane (https://appea.eventsair.com/appea-2022/)

  • A reconnaissance geological and radiometric survey of the Mt. Cavenagh area was carried out by B.P. Walpole and J. Sleis of the geological section and J. Daly and D. Dyson of the geophysical section of the Bureau of Mineral Resources. The objects of the survey were to examine reported occurrences of radioactive minerals in this area and to determine whether further prospecting of the area for radioactive orebodies was warranted. The general geology of the area, and the economic geology of the six prospects examined, are described in this report.

  • Two methods are outlined in this report. The first, is a method intended for the determination of porosity of consolidated sediments. The method is applicable to those sediments included in rotary drill cores and hand specimens of rock collected in the field. The second, is a method intended for the determination of permeability. It is applicable to suitably sized samples of rocks and any other substances whose constitutions permit of their being treated by the procedure set out in this method, subject to their own inherent limitations relative to this method. This report provides a detailed description of each of these methods.

  • In the search for deposits of radioactive minerals in Australia the area of the Barrier Ranges appears especially worthy of investigation on geological grounds because it is composed of highly mineralised pre-Cambrian rocks. Mines in this area comprise the major producing mines along the main Broken Hill lode, one developed mine of less importance (the Pinnacles), and a number of small silver, lead and copper mines scattered over the surrounding district. The present report deals with the results of a reconnaissance radio-active survey performed by the Geophysical Section of the Bureau during July and August, 1950. The work was confined to the smaller mines, attention being directed, in the first instance to the mines from which radio-active museum specimens were stated to have come. At each mine the following tests were performed: tests on dumps and residues to discover whether any quantity of stone carrying a significant content of radio-active minerals had been broken during mining operations, tests on accessible exposed faces, and tests on rocks surrounding the mines. The tests were made with portable Geiger-Mueller rate-meters. Readings taken are quoted as multiples of background count, which has been considered as a constant characteristic of the instruments, rather than as the general reading obtained on country rock in the area. In most areas these methods of defining background would lead to the same result. As mentioned later, however, in the Broken Hill area this is not the case. Generally, the schists and gneisses on this field are definitely radio-active, and a true background reading, indicative of the complete absence of radio-active minerals, is obtained only on basic rocks. A reconnaissance survey was also made over the Euriowie tin field. Tests were also made around felspar quarries at Egebeck.

  • Accurate seismic velocity model is essential for depth conversion and rock property determination in the context of fluid flow modelling to support site selection for secure storage of carbon dioxide. The Bonaparte CO2 Storage project funded by the Australian Government will assess the carbon dioxide geological storage potential of two blocks in the Petrel Sub-basin on the Australian NW Margin. These blocks were offered as part of the 2009 release of offshore areas for greenhouse gas (GHG) storage assessment. The Petrel Sub-basin is a northwest-trending Paleozoic rift within the southern Bonaparte Basin. The geological reservoirs of interest include the Jurassic Plover Formation and the Early Cretaceous Sandpiper Sandstone. Primary and secondary seals of interest include the Late Jurassic Frigate Formation and the Cretaceous Bathurst Island Group (regional seal). Trapping mechanisms for injected CO2 may include faulted anticlines, stratigraphic traps, salt diapirs and/or migration dissolution and residual trapping. Water depths are generally less than 100m and depths to reservoir/seal pairs range between 800-2500m below the sea surface. All three main types of seismic velocity measurements are available within the area of our study: velocities derived from stacking of multi-channel reflection seismic data; velocities determined in the process of ray tracing modelling of large offset refraction data acquired by the ocean bottom seismographs (OBS) along the coincident reflection/refraction transect, and velocities from well log (sonic, vertical seismic profiling and check shot) measurements.